Identification and characterization of an expansin gene AsEXP1 associated with heat tolerance in C3 Agrostis grass species.
نویسندگان
چکیده
Plant tolerance of heat stress involves various changes at physiological and molecular levels. The objective of this study was to examine the expression of a gene encoding expansin protein in relation to heat tolerance in two C(3) grass species and genotypes differing in heat tolerance. Heat-tolerant, thermal Agrostis scabra, adapted to high temperatures in geothermal areas in Yellowstone National Park, was subjected to 20 degrees C (control) or 40 degrees C (heat stress) for 7 d in a growth chamber. Differential display analysis identified that a gene, AsEXP1, encoding an expansin protein, was strongly up-regulated in leaves exposed to heat stress in thermal A. scabra. Virtual northern hybridization and RT-PCR confirmed that AsEXP1 was a heat-inducible gene in leaves. The expression of AsEXP1 was induced at 1 h of plant exposure to heat stress and reached the highest level of expression at 4 h of treatment. A 1.3 kb full-length cDNA of AsEXP1 was isolated, which encodes a 251 amino acid protein. Two ecotypes of thermal A. scabra and 10 genotypes of Agrostis stolonifera (creeping bentgrass), a widely used turfgrass species in cool climatic regions, varying in the level of heat tolerance, were exposed to 40 degrees C for 7 d to examine the level of AsEXP1 expression in relation to heat tolerance. Genetic variation in heat tolerance was evaluated by measuring cell membrane stability, photochemical efficiency, and leaf growth. RT-PCR analysis revealed that the level of AsEXP1 in different genotypes was positively correlated with the level of heat tolerance in both grass species. The results first identified a heat-related expansin gene in grass species and suggest that AsEXP1 may be useful as a molecular marker to select for heat-tolerant grass germplasm.
منابع مشابه
Transgenic Tobacco Plants Overexpressing a Grass PpEXP1 Gene Exhibit Enhanced Tolerance to Heat Stress
Heat stress is a detrimental abiotic stress limiting the growth of many plant species and is associated with various cellular and physiological damages. Expansins are a family of proteins which are known to play roles in regulating cell wall elongation and expansion, as well as other growth and developmental processes. The in vitro roles of expansins regulating plant heat tolerance are not well...
متن کاملRoot proteomic responses to heat stress in two Agrostis grass species contrasting in heat tolerance
Protein metabolism plays an important role in plant adaptation to heat stress. This study was designed to identify heat-responsive proteins in roots associated with thermotolerance for two C3 grass species contrasting in heat tolerance, thermal Agrostis scabra and heat-sensitive Agrostis stolonifera L. Plants were exposed to 20 degrees C (control), 30 C (moderate heat stress), or 40 degrees C (...
متن کاملRoot carbon and protein metabolism associated with heat tolerance.
Extensive past efforts have been taken toward understanding heat tolerance mechanisms of the aboveground organs. Root systems play critical roles in whole-plant adaptation to heat stress, but are less studied. This review discusses recent research results revealing some critical physiological and metabolic factors underlying root thermotolerance, with a focus on temperate perennial grass specie...
متن کاملCandidate genes and molecular markers associated with heat tolerance in colonial Bentgrass
Elevated temperature is a major abiotic stress limiting the growth of cool-season grasses during the summer months. The objectives of this study were to determine the genetic variation in the expression patterns of selected genes involved in several major metabolic pathways regulating heat tolerance for two genotypes contrasting in heat tolerance to confirm their status as potential candidate g...
متن کاملProteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species
Cytokinins (CKs) are known to regulate leaf senescence and affect heat tolerance, but mechanisms underlying CK regulation of heat tolerance are not well understood. A comprehensive proteomic study was conducted to identify proteins altered by the expression of the adenine isopentenyl transferase (ipt) gene controlling CK synthesis and associated with heat tolerance in transgenic plants for a C(...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 58 13 شماره
صفحات -
تاریخ انتشار 2007